Primal interior point method for minimization of generalized minimax functions
نویسندگان
چکیده
In this paper, we propose a primal interior-point method for large sparse generalized minimax optimization. After a short introduction, where the problem is stated, we introduce the basic equations of the Newton method applied to the KKT conditions and propose a primal interior-point method. Next we describe the basic algorithm and give more details concerning its implementation covering numerical differentiation, variable metric updates, and a barrier parameter decrease. Using standard weak assumptions, we prove that this algorithm is globally convergent if a bounded barrier is used. Then, using stronger assumptions, we prove that it is globally convergent also for the logarithmic barrier. Finally, we present results of computational experiments confirming the efficiency of the primal interior point method for special cases of generalized minimax problems.
منابع مشابه
Primal Interior-Point Method for Large Sparse Minimax Optimization
In this paper, we propose a primal interior-point method for large sparse minimax optimization. After a short introduction, the complete algorithm is introduced and important implementation details are given. We prove that this algorithm is globally convergent under standard mild assumptions. Thus the large sparse nonconvex minimax optimization problems can be solved successfully. The results o...
متن کاملABS Solution of equations of second kind and application to the primal-dual interior point method for linear programming
Abstract We consider an application of the ABS procedure to the linear systems arising from the primal-dual interior point methods where Newton method is used to compute path to the solution. When approaching the solution the linear system, which has the form of normal equations of the second kind, becomes more and more ill conditioned. We show how the use of the Huang algorithm in the ABS cl...
متن کاملAn Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function
In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...
متن کاملAn interior-point algorithm for $P_{ast}(kappa)$-linear complementarity problem based on a new trigonometric kernel function
In this paper, an interior-point algorithm for $P_{ast}(kappa)$-Linear Complementarity Problem (LCP) based on a new parametric trigonometric kernel function is proposed. By applying strictly feasible starting point condition and using some simple analysis tools, we prove that our algorithm has $O((1+2kappa)sqrt{n} log nlogfrac{n}{epsilon})$ iteration bound for large-update methods, which coinc...
متن کاملInterior Point Implementations of Alternating Minimization Training Interior Point Implementations of Alternating Minimization Training
This paper presents an alternating minimization algorithm used to train radial basis function networks. The algorithm is a modiication of an interior point method used in solving primal linear programs. The resulting algorithm is shown to have a convergence rate on the order of p nL iterations where n is a measure of the network size and L is a measure of the resulting solution's accuracy.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Kybernetika
دوره 46 شماره
صفحات -
تاریخ انتشار 2010